

The Kelkar Education Trust's Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Mithaghar Road, Mulund East, Mumbai-400081, India

College with Potential for Excellence Phones :022-21631421, 221631423, 221631004 Fax : 022-221634262, email: vazecollege@gmail.com

Syllabus for S.Y.B.A. Programme Physics Open Elective [OE]

Syllabus as per Choice Based Credit System (NEP-2020)

(June 2025 Onwards)

Submitted by

Department of PhysicsVinayak Ganesh Vaze College of Arts, Science and Commerce (Autonomous)Mithagar Road, Mulund (East) Mumbai-400081. Maharashtra, India.
Tel: 022-21631004, Fax: 022-21634262E-mail:vazecollege@gmail.comWebsite :www.vazecollege.net

The Kelkar Education Trust's

Vinayak Ganesh Vaze College of Arts, Science & Commerce (Autonomous)

Syllabus as per Choice Based Credit System (NEP 2020) Syllabus for Approval

Subject: Physics Open Elective

Sr. No.	Heading	Particulars		
1	Title of Programme	Second Year B.A. [Physics OE] : Semester III and IV		
2	Eligibility for Admission As per university guideline			
3	Passing marks	Minimum D Grade or equivalent minimum marks for passing at the Graduation level.		
4	Ordinances/Regulations (if any)			
5	No. of Years/Semesters	One year/ Two semester		
6	Level	U.G. Part-I : Level- 5.0		
7	Pattern	Semester		
8	Status	Revised		
9	To be implemented from Academic year	2025-2026		

Date:

Signature:

BOS Chairperson:

The Framework of the Choice-Based Credit System [NEP-2020]

• Major Subject:

A single subject course of study pursued by a student as a mandatory requirement of the programme of study. Indian Knowledge System (IKS) to be included in the core courses.

• Elective Course:

An elective course could be a project designed to acquire skills to supplement the major study.

• Minor Subject:

A second subject of study pursued by a student as an additional requirement of the programme of study.

• OE: Open Elective

An elective course chosen generally from an unrelated discipline/subject, to seek multidisciplinary exposure.

• AEC: Ability Enhancement Course

Mandatory Courses on content related to Language, and Literature (i) Compulsory – English communication (ii) Elective – any Indian language other than English.

• IKS: Indian Knowledge System (Generic)

Mandatory course - an overview of the contribution of India towards multidisciplinary research and development.

• VSC: Vocational Skill Course

Courses aimed at imparting practical skills, hands-on training, and soft skills to increase the employability of students. Specific or supporting the major subject is to be chosen from a basket/pool offered by the college.

• SEC: Skill Enhancement Course

Courses aimed at imparting practical skills, hands-on training, and soft skills to increase students' employability. It could be chosen from a basket/pool offered by the college or a MOOC on Swayam or NPTEL platforms.

• On-Job Training (OJT)/Internship/Field Project (FP)/Community Engagement Programme (CEP)/Research Project (RP)

Application of knowledge/concepts in solving or analysing a real-life problem. All these are related to the major subject.

• CC: Co-curricular Course

For the holistic development of students through Cultural activities such as performing art, visual art, NCC, NSS, Yoga, etc.

• VEC: Value Education Course

Compulsory courses on

- (i) The Constitution of India
- (ii) Environmental Education

Programme Educational Objectives

PEO1	Introduce basic concepts of physics in a relatable manner to students from non-science backgrounds.
PEO2	Enable learners to appreciate the scientific basis of everyday experiences and common technologies.
PEO3	Equip students with practical skills for measuring physical quantities using basic instruments.
DEO4	
PEU4	Encourage scientific thinking in analyzing personal health, environment, and household decisions.
PEO4 PEO5	 Encourage scientific thinking in analyzing personal health, environment, and household decisions. Foster social and ethical responsibility by understanding the implications of using physical technologies.

Programme Outcomes

Upon successful completion of the B.Sc. (Physics) course from Vaze College affiliated to Mumbai University, graduates can expect the following outcomes:

P01	Understand and explain fundamental physical concepts and their relevance to everyday life and health.
P02	Apply physics principles to observe, describe, and interpret real-life situations and technological devices.
P03	Perform basic physical measurements using common instruments and interpret the outcomes appropriately.
P04	Communicate physics-related observations and ideas effectively using simple scientific language.
P05	Demonstrate awareness of the impact of physics-based technologies on health, environment, and safety.
P06	Develop curiosity, critical thinking, and a habit of lifelong learning through interdisciplinary exploration.

Programme Specific Outcomes

PSO1	Demonstrate an understanding of the historical development of mathematical and astronomical knowledge in ancient India and its practical applications.
PSO2	Analyze the evolution of scientific thinking and philosophical perspectives on the structure and constituents of matter in ancient and medieval India.
PSO3	Evaluate the contributions of medieval Indian astronomers and their role in the development of scientific instruments, observatories, and scholarly translations.
PSO4	Assess the growth of scientific institutions in colonial India, their response to modern scientific knowledge, and the impact of British rule on Indian scientific advancements.
PSO5	Identify key achievements in Indian space research and nuclear programs, focusing on organizations like ISRO, DRDO, and BARC, and their contributions to national development.
PSO6	Critically examine India's international collaborations in scientific research, particularly in the fields of space exploration, nuclear energy, and advanced physics, and their role in global scientific progress.

The Detailed Semester and Course Wise Syllabus as follows:

		SEMESTER III				
	Code	Course of Study	Cr.	L	Т	Р
OE	VSPH208	History of Physical Sciences in India	2	2	I	-
	Total 2 2 -				-	

		SEMESTER IV				
	Code	Course of Study	Cr.	L	Τ	Р
OE	VSPH258	Scientific Advances of Modern India	2	2	-	-
Total			2	2	-	-

 \mathbf{L} = Lecture hours per week \mathbf{T} = Tutorial hours per week \mathbf{P} = Practical hours per week

- 1 Credit = 15 Hours Lecture
- 1 Credit = 30 Hours Practical

Semester – III

Open Elective [For Arts Students] Course Code: VSPH208 Credits: 2

Physical Sciences in India

Course Learning Objective

Upon Completion of the course the student will be able to

LO 1	To introduce students to the early Indian contributions in mathematics and
	astronomy, including ideas of time, seasons, and celestial observations.
LO 2	To explore ancient Indian philosophical ideas regarding the structure and
	constituents of matter.
LO 3	To highlight developments in astronomy during medieval India, including
	observatories, instruments, and scholarly translations.
LO 4	To analyse the scientific institutions and the Indian response to modern scientific
	knowledge during colonial times.

Course Code VSPH208		Physical Sciences in India	Credits 2	Lectures 30	
Course Ou	Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	1 Describe key developments in mathematics and astronomy in ancient India and their practical applications.				
CO 2	Comp histor	pare philosophical approaches to matter and identi- rical and scientific contexts.	fy their re	elevance in	
CO 3	Sumr role c	narize scientific advances and royal patronage in medie of observatories and instruments.	val India, in	cluding the	
CO 4	Evalu engag	ate the growth of scientific institutions in colonial gement with global scientific knowledge.	India and	the Indian	
Unit	Cont	ent		No. of Lectures	
	1. An	cient India in Astronomy and Mathematics			
	1.1. Work in Mathematics, Geometry				
	1.2. Idea of Universe, Observation Methods				
Unit 1	1.3. Calculation of Seasons, Equation of Time			10	
	2.	Ancient India in the Understanding of Matter			
	2.1	L Different Philosophies on Constituents of Matter			
	3. M	edieval India in Astronomy			
Unit 2	3.1	l. Intellectual Curiosity and Patronage of Rulers		10	
	3.2	2. Astronomical Observatories			

	3.3. Scientific Instruments	
	3.4. Scientific Literature and Its Translation	
	III. Colonial India and Scientific Progress: Indian Response to New	
	Scientific Knowledge	
	4.1. Indian Association for Cultivation of Sciences	
	4.2. Bombay Astrophysical Observatory	
Unit 3	4.3. Trigonometrical Society of India	
	4.4. Astronomical Observatory of Madras	
	4.5. Indian Institute of Science	
	4.6. Overview of Space Research in Colonial India	

Reference Books :

- 1. The History of Mathematics: A Brief Course Roger Cooke, Wiley Interscience
- 2. In pursuit of excellence: A history of the Indian Institute of Science <u>B.V. Subbarayappa</u>, Tata Mcgraw-hill
- 3. Nuclear India J. P. Jain. India Quarterly, Radiant Publishers
- 4. Science and Empire Deepak Kumar; Anamika, New Delhi
- 5. Science, Technology and Colonization Satpal Sangwan; Anamika, New Delhi
- 6. The colonial model and the emergence of national science in India V. V. Krishna
- 7. Life and times of Sawai Jai Singh V. S. Bhatnagar
- 8. Cosmic Architecture of India, Astronomical Monuments of Jai Singh Andreas Volwahsen
- 9. Science and Technology in Medieval India O. P. Jaggi
- 10. Science in British India R. Kocchar
- 11.ISRO: Institutions that shaped modern India Ajay Lele
- 12.<u>https://www.ino.tifr.res.in/ino/</u>

Semester – IV

Open Elective [For Arts Students]

Course Code: VSPH258

Credits: 2

Scientific Advances of Modern India

Course Learning Objective

Upon Completion of the course the student will be able to

LO 1	Understand the key milestones in India's space research, including the establishment of
	ISRO, the INSAT system, and significant space missions.
LO 2	Analyse the evolution of India's nuclear program, including the establishment of the
	Department of Atomic Energy (DAE) and the BARC's contributions.
LO 3	Evaluate the contributions of notable Indian scientific organizations like CSIR, TIFR, and the
	Institute for Plasma Research in advancing scientific research.
LO 4	Examine India's international collaborations in scientific research and their impact, focusing
	on organizations like CERN, ITER, LIGO, and INO.

Course Code VSPH258		Scientific Advances of Modern India	Credits 2	Lectures 30
Course Outcomes : Upon Completion of the course the student will be able to				
CO 1	Describe the major achievements in Indian space research, including ke and the role of ISRO and DRDO in shaping India's space capabilities.			y missions,
CO 2	Asses like B	s the progress of India's nuclear program and the role of ARC in the development of nuclear energy.	scientific in	stitutions
CO 3	Discu for Pl	ss the contributions of scientific organizations such as C asma Research to India's scientific advancements.	SIR, TIFR, a	nd Institute
CO 4	CO 4 Evaluate the significance of India's participation in global scientific coll such as CERN, ITER, and LIGO, and their impact on research.			laborations
Unit	Conte	ent		No. of Lectures
Unit 1	1. Mo 1 1 S 1 1 M 1 R 2. Evo 2 E 2 2	 bdern India in Space 1. Defense Research and Development Organization (DR 2. Indian Space Research: Establishment of ISRO, Indian atellite (INSAT) System 3. Indian Space Policy and Laws 4. Overview of Achievements in Indian Space Research a lissions 5. Notable Indian Scientists in Astronomy, Astrophysics, esearch blution of the Indian Nuclear Program 1. Establishment of Department of Atomic Energy (DAE) nergy Commission 2. India's Three-Stage Nuclear Power Program, BARC 3. Notable Indian Scientists in the Field 	DO) National and Space	10

Unit 2	 3. Other Notable Scientific Organizations and Their Contributions 3.1. Council of Scientific and Industrial Research (CSIR) 3.2. Tata Institute of Fundamental Research (TIFR) 3.3. Institute for Plasma Research 3.4. Notable Indian Scientists in the Field 	10
	4. India's International Collaboration	
	4.1. CERN-Large Hadron Collider	
	4.2. Facility for Antiproton and Ion Research (FAIR)	
	4.3. India-Based Neutrino Observatory (INO)	
Unit 3	4.4. International Thermonuclear Experimental Reactor (ITER)	10
	4.5. Laser Interferometer Gravitational-Wave Observatory (LIGO)	
	4.6. Thirty Meter Telescope (TMT)	
	4.7. A Large Ion Collider Experiment (ALICE)	
	4.8. Notable International Scientists of Indian Origin	

Reference Books :

- 1. The History of Mathematics: A Brief Course Roger Cooke, Wiley-Interscience
- 2. In pursuit of excellence: A history of the Indian Institute of Science B.V. Subbarayappa, Tata McGraw-Hill
- 3. Nuclear India J. P. Jain. India Quarterly, Radiant Publishers
- 4. Science and Empire Deepak Kumar; Anamika, New Delhi
- 5. Science, Technology and Colonization Satpal Sangwan; Anamika, New Delhi
- 6. The colonial model and the emergence of national science in India V. V. Krishna
- 7. Life and times of Sawai Jai Singh V. S. Bhatnagar
- 8. Cosmic Architecture of India, Astronomical Monuments of Jai Singh Andreas Volwahsen
- 9. Science and Technology in Medieval India O. P. Jaggi
- 10. Science in British India R. Kocchar
- 11.ISRO: Institutions that shaped modern India Ajay Lele
- 12.<u>https://www.ino.tifr.res.in/ino/</u>

Theory Examination Pattern for

(Open Elective)

Internal Assessment – Theory Paper (Total: 40 Marks)

Sr. No.	Component	Nature of Assessment	Marks
1.	CIA-1	Written test conducted	
	Class Test (Short Answers / MCQs / Objective	in class	15
	Questions)		
2.	CIA-2	Individual or group	
	Assignment / Project / Presentation / Book Review /	work submitted as report	15
	Research Review	or presented orally	
3.	CIA-3	Based on engagement,	10
	Participation, Performance & Attendance	attentiveness, regularity	10
Total			

External Assessment – Semester End Theory Paper (Total: 60 Marks)

Paper Name				
Duration : 2 Hours		Iarks : 60		
Q. 1	Questions Based on Unit 1	15		
Q. 2	Questions Based on Unit 2	15		
Q. 3	Questions Based on Unit 3	15		
Q. 4	Questions Based on Unit 1, 2, 3	15		